Simulations of beams in plasmas for Heavy lon Fusion

J.-L. Vay?

Contributions from R. Cohen?, A. Friedman?, D. Grote?,
|. Kaganovich3, A. Sefkow?, P. Seidl*, W. Sharp?, D. Welch?

!Lawrence Berkeley National Laboratory, CA, USA
2Lawrence Livermore National Laboratory, CA, USA
3Princeton Plasma Physics Laboratory, NJ, USA
4Sandia National Laboratory, NM, USA
>\/oss Scientific, NM, USA

19th International Symposium on Heavy lon Inertial Fusion
Berkeley, CA, USA — August 12-17, 2012

Work performed for U.S. D.O.E. by U.C. LBNL under contract DE-AC03-76F00098 and LLNL under contract DE-AC52-07NA27344.

ey | U %ﬁjPPPl] Aersc

jlvay@Ibl.gov [ EEEEEEEEEEE !




The Heavy lon Inertial Fusion (HIF) program is studying the science of ion-

heated matter, as well as drivers & targets for inertial fusion energy
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Space/time scales span 8 orders of magnitude:
from <mm to km>/<ps to 100 ms>

Simulation goal — integrated self-consistent predictive capability  including:
*  beam(s) generation, acceleration, focusing and

compression along accelerator,

. loss of particles at walls, interaction with

desorbed gas and electrons,

*  neutralization from plasma in chamber,
from source... R

target physics and diagnostics.

...to target
=> Need self-consistent multiphysics computing.
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Examples of beams in plasmas simulations in HIFS

= Beam transport in HIF chamber

= Physics of beams in plasmas

= Neutralized Drift Compression (NTX, NDCX, NDCX-II)
= Electron cloud effects (HCX)

= Formation of high charge states HIF beams (Future HIF driver design)

Codes: BIC (Langdon et al), BPIC (Vay), BTRAC (Barboza), LSP (Voss S.), Warp (Grote et al)
are based on the Particle-In-Cell (PIC) method.
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Particle-In-Cell workflow
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Particle-In-Cell workflow
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Particle-In-Cell workflow
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Particle-In-Cell workflow

Push particles
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Plasma=collection of interacting
charged particles

Filtering
potential/fields

[Absorption/Emission |

Deposit charge/current

Field solve

Clouds of
particles
charge/currents

Poisson/Maxwell

+ filtering (charge,currents and/or potential,fields).

+ absorption/emission (injection, loss at walls, secondary emission, ionization, etc),

+ external forces (accelerator lattice elements),
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Examples of beams in plasmas simulations in HIFS

= Beam transport in HIF chamber

= Physics of beams in plasmas

= Neutralized Drift Compression (NTX, NDCX, NDCX-II)
= Electron cloud effects (HCX)

= Formation of high charge states HIF beams (Future HIF driver design)
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Cut-away view shows beam and target injection paths for an

example thick-liquid chamber (Hylife Il design)

Liquid vapors on path of beams can be
lonized and interact with beams.

IMPLFD REP: NG-CHMBR-OR
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Simulation of ballistic transport through FLIBE
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Transverse compression leads to raising
electron temperature, imperfect
neutralization and emittance growth.

Uncertainties on gas ionization & beam
stripping cross sections constrain the
background Flibe to low densities.

| enve|°pes 95% 16 - Beam stripping cross section (10'6cm2)
] E T — -0 |
N E 12 =1
’g -] @ : """""""""""""""""""""""""""""" -2
ETV T S N\ — O S S—
O 5 - electrons 3 —— 3
E 5. / % -3 NN NN — - 4 |
— . 2]
] ions BeF,* s
A ® 4 T
_ ion beam = S
/ & R I — e S—— ———————
— [0}
— m o ; ; ; ;
0. T Y Y T Y Y y 0.00 0.60 1.20 1.80 2.40 3.00
2. 3. Flibe ionization cross section (10'6¢cm?
m

Vay et al, Phys. Plasmas 5 (1998)
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A preformed plasma channel provides better neutralization

s . BIC(RZ)-7.5kA, 5.3 GeV Cs* __
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Integrated simulation of final focus design for NDC with

discharge transport for HIF driver

lon beam Neutralized drift Neutralized
in Brillouin compression region focusing region =~ Chamber
first wall
Plasma response .
Solenoids

(yellow and blue

regions) modeled with Adiabatic section

a scalar conductivity in Hvbri
ybrid
L SP Immersed
Plasma / nBe taég;t
«— 100m > 50 kA channel current

Welch et al, HIF 2004
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Examples of beams in plasmas simulations in HIFS

= Beam transport in HIF chamber

= Physics of beams in plasmas

= Neutralized Drift Compression (NTX, NDCX, NDCX-II)
= Electron cloud effects (HCX)

= Formation of high charge states HIF beams (Future HIF driver design)

< 3 | (S PPPL s
Vay — HIF 2012 /] 13




Simulations also help us understand beam flows in plasmas

Charge neutralization depends on pulse duration and plasma frequency.

®,T,/27=0.19 4, = ©,T,/27=0.64 0, T,/21=6.4

3.0
2.0

1.0

Direction of propagation

0.0

V,=L,/t,=0.5¢c
n,=0.5n, LSP simulations

Criterion for near complete neutralization: wprb/2n:>>1.

Kaganovich et al, Phys. Plasmas 11 (2004)
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Reproduced with Warp in 2D and extended to 3D

no refinement 2 levels of mesh refinement (MR)

2-D high resolution 2-D low resolution + MR 3-D
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Solenoidal magnetic field influences the waves in plasma

_ _ Whistler
Plots of electron charge density contours in (x,y)

space, calculated in 2D slab geometry using the /// B §

LSP code with parameters:

Plasma: n =10''cm3; Beam: V. =0.2c, 48.0A,
r,=2.85cm and pulse duration t  =4.75 ns.

A solenoidal field of 1014 G corresponds to W =W . k\\ J///
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Kaganovich et al, Phys. Plasmas 17 (2010) and this symposium.
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Examples of beams in plasmas simulations in HIFS

= Beam transport in HIF chamber

= Physics of beams in plasmas

= Neutralized Drift Compression (NTX, NDCX, NDCX-II)
= Electron cloud effects (HCX)

= Formation of high charge states HIF beams (Future HIF driver design)
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LSP was also benchmarked against plasma neutralization

experiments on NTX

With plasma plug

With plasma plug and RE Plasma 100% neutralization

NTX?!
MEASUREMENT

6-mA, 254-keV,
2-cm K* beam,
with L = 1m

LSP?
SIMULATIONS

Roy et al, HIF 2004; ?Welch et al, HIF 2004
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Integrated source-to-target simulation of NDCX with Warp

Simulation carried out in two stages
— From source to IBM — beam only so use large At
— From IBM to target — with plasma, so constrained by w, At <1

Transition at a plane, saving
particles and ES potential

At=1.25ns

Runtime ~ 1 hour
0.05 |

' At =0.0125ns
Mesh refinement to Runtime ~ 2 days
capture details of

the source

Grote et al, ICAP 2009
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PIC simulations of the injection of the neutralizing plasma

LSP NDCX Warp
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°0 o Qualitative agreement found with experiment:
I J\ - Similar density profile on axis
» Rapid radial falloff in density at round 4-5 mm radius
Sefkow et al, Phys. Plasmas 16 (2009) Grote et al, ICAP (2009)
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Examples of beams in plasmas simulations in HIFS

= Beam transport in HIF chamber

= Physics of beams in plasmas

= Neutralized Drift Compression (NTX, NDCX, NDCX-II)
= Electron cloud effects (HCX)

= Formation of high charge states HIF beams (Future HIF driver design)
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Modeling of the interaction of beam with electrons in a quadrupole

High Current Experiment (HCX)
ov oV OV/+9KV oV ~6 MHz signal in in simulation AND

experiment
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Vay et al, HIF 2006 Study of oscillations pending: Kelvin-Helmholtz, two-stream, other?
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Effects of electrons on beam in good qualitative agreement
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Examples of beams in plasmas simulations in HIFS

= Beam transport in HIF chamber

= Physics of beams in plasmas

= Neutralized Drift Compression (NTX, NDCX, NDCX-II)
= Electron cloud effects (HCX)

= Formation of high charge states HIF beams (Future HIF driver design)
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Formation of high charge states HIF beams : challenges

Nonlinear space charge forces
Q=1
[; Q = n, of interest
Incident, Q = 1 Q= n+
Q=n+...
Stripping
(jet or foil)
e emittance growth due to space charge
e separation of charge states —
e particle loss to walls or in dumps chicane
e gas load, heat load on stripping target d 1 ‘
o effect of secondary e on the ion beam ‘
e |ongitudinal energy spread (straggling)
e Implementation in a multiple beam d2

linac

d3

Seidl et al, PAC 2011
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Example: 500 MeV, U* = U'?* (2.1 MeV/amu), p = 6.7 x 1072, | =

11 A, ¢,,=10 mmemrad, €., = €,,°P = 0.67 mmemrad.

,

i ﬁ“]q High charge state simulation — J.—L. 4, Seidl — 2011-04—21 Time = 4.107C01 ns
/ @[:'p Uranium 500 MeV, g=+1=: Na Chicane
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Example: 500 MeV, U* = U (2.1 MeV/amu),  =6.7 x 102, | =
11 A, ¢,,=10 mmemrad, €., = €,,°P = 0.67 mmemrad.

= [ﬁ High charge state simulation — J.—L. Vay, P.A, Seidl — 2011-04-21
v /jpl Uranium 500 MeV, q=+1=>+12 — Chicane B=5T

With chicane
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pop uéatl on
o

10 20
charge state

color=Z
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" The study of the propagation of beam(s) in plasma (neutral and
non-neutral) is an important component of the HIFS portfolio:

* front end: high-charge state beams

 accelerator: electron cloud effects

e final focus and chamber propagation: neutralized drift
compression, discharge transport, etc

= Several codes and methods have been used and developed by the
HIFS program
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